metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Wei-Ping Chi,* Meng Zhang and Hong Wang

Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China

Correspondence e-mail: wpchi111@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.038 wR factor = 0.097 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aquabis(2-nitrobenzoato-κO)bis(pyridine-κN)copper(II)

In the title complex, $[Cu(C_7H_4NO_4)_2(C_5H_5N)_2(H_2O)]$, the Cu^{II} atom has a slightly distorted square-pyramidal coordination environment, bonded to two carboxylate O atoms of two 2-nitrobenzoate ligands, two pyridine N atoms and one water O atom. $O-H \cdots O$ hydrogen-bonding interactions result in a chain structure.

Comment

The designed synthesis of complexes with special properties has received much attention recently (Yaghi *et al.*, 2003; Moulton & Zaworotko, 2001). The hydrothermal technique provides a powerful tool for the fabrication of such structures (Feng & Xu, 2001; Wen *et al.*, 2005). The main strategy widely used in this area is the building-block approach. In this paper, we report a new Cu^{II} complex, $[Cu(C_7H_4NO_4)_2(C_5H_5N)_2-(H_2O)]$, (I), which was synthesized from 2-nitrobenzoic acid and pyridine under hydrothermal conditions.

The molecular structure of (I) is depicted in Fig. 1. The central Cu^{II} atom is five-coordinated by two carboxylate O atoms of two 2-nitrobenzoate ligands, two pyridine N atoms and one water O atom, resulting in a slightly distorted square-pyramidal coordination geometry. Two carboxylate O and two pyridine N atoms determine the basal plane, and atom Cu1 is displaced from this plane by 0.0964 (6) Å, while the water O atom occupies the apical position. The bond lengths around the Cu atom are in reasonable agreement with the values found in other Cu^{II} complexes (Cambridge Structural Database, Version 5.27, November 2005; Allen, 2002).

As shown in Fig. 2, adjacent molecules of (I) are linked *via* water-mediated hydrogen-bonding interactions to generate a one-dimensional chain propagating along the a axis.

Experimental

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography All rights reserved

A mixture of $Cu(OH)_2$ (0.098 g, 1 mmol), 2-nitrobenzoic acid (0.335 g, 2 mmol) and distilled water (16 ml) was stirred under

Received 20 April 2006 Accepted 21 April 2006

Figure 1

A view of (I), with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Figure 2

The one-dimensional chain structure of (I). H atoms bonded to C atoms have been omitted. Hydrogen bonds are depicted as dashed lines.

ambient conditions, and then pyridine (0.16 g, 2 mmol) was added dropwise to the suspension. The mixture was sealed in a 25 ml Teflonlined stainless steel reactor, heated to 413 K for 60 h and then cooled to room temperature. Blue crystals of (I) were produced.

Crystal data

$[Cu(C_7H_4NO_4)_2(C_5H_5N)_2(H_2O)]$
$M_r = 571.98$
Triclinic, P1
$a = 7.4496 (15) \text{\AA}$
b = 10.872 (2) Å
c = 15.594 (3) Å
$\alpha = 80.14 \ (3)^{\circ}$
$\beta = 81.45 \ (3)^{\circ}$
$\gamma = 87.03 \ (3)^{\circ}$

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.694, T_{\max} = 0.827$

V = 1230.1 (4) Å³ Z = 2 $D_x = 1.544 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 0.95 \text{ mm}^{-1}$ T = 296 (2) K Prism, blue $0.40 \times 0.33 \times 0.20 \ \text{mm}$

12195 measured reflections 5580 independent reflections 4536 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.029$ $\theta_{\rm max} = 27.5^\circ$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0503P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.039$	+ 0.1673P]
$wR(F^2) = 0.097$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
5580 reflections	$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$
351 parameters	$\Delta \rho_{\rm min} = -0.55 \text{ e} \text{ \AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected geometric parameters (Å, °).

Cu1-O5	1.9461 (13)	Cu1-N4	2.0093 (18)
Cu1-O1	1.9647 (14)	Cu1 - O1W	2.3700 (17)
Cu1-N3	2.0028 (17)		
O5-Cu1-O1	175.40 (6)	N3-Cu1-N4	170.68 (7)
O5-Cu1-N3	90.39 (7)	O5-Cu1-O1W	87.87 (6)
O1-Cu1-N3	89.64 (7)	O1-Cu1-O1W	96.72 (7)
O5-Cu1-N4	89.75 (7)	N3-Cu1-O1W	93.70 (7)
O1-Cu1-N4	89.47 (7)	N4-Cu1-O1W	95.62 (7)

Table 2		
Hydrogen-bond	geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O1W-H1WB\cdots O2\\ O1W-H1WA\cdots O6^{i} \end{array}$	0.84 (2)	1.85 (2)	2.653 (2)	159 (3)
	0.82 (2)	1.99 (2)	2.776 (2)	160 (2)

Symmetry code: (i) x - 1, y, z.

H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 Å and $U_{iso}(H) =$ $1.2U_{eq}(C)$. Water H atoms were located in a difference map and refined with distance restraints of O-H = 0.85 (2) Å and $H \cdots H =$ 1.30 (2) Å, with displacement parameters set to $1.5U_{eq}(O)$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Feng, S. & Xu, R. (2001). Acc. Chem. Res. 34, 239-247.
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Wen, Y.-H., Cheng, J.-K., Feng, Y.-L., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2005). Inorg. Chim. Acta, 358, 3347-3354.
- Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.