Structure Reports

Online
ISSN 1600-5368

Wei-Ping Chi,* Meng Zhang and Hong Wang

Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China

Correspondence e-mail:
wpchi111@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.097$
Data-to-parameter ratio $=15.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

Aquabis(2-nitrobenzoato- κ O)bis(pyridine- κN)copper(II)

In the title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the $\mathrm{Cu}^{\text {II }}$ atom has a slightly distorted square-pyramidal coordination environment, bonded to two carboxylate O atoms of two 2-nitrobenzoate ligands, two pyridine N atoms and one water O atom. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions result in a chain structure.

Comment

The designed synthesis of complexes with special properties has received much attention recently (Yaghi et al., 2003; Moulton \& Zaworotko, 2001). The hydrothermal technique provides a powerful tool for the fabrication of such structures (Feng \& Xu, 2001; Wen et al., 2005). The main strategy widely used in this area is the building-block approach. In this paper, we report a new $\mathrm{Cu}^{\text {II }}$ complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2^{-}}\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)$], (I), which was synthesized from 2-nitrobenzoic acid and pyridine under hydrothermal conditions.

(I)

The molecular structure of (I) is depicted in Fig. 1. The central $\mathrm{Cu}^{\mathrm{II}}$ atom is five-coordinated by two carboxylate O atoms of two 2-nitrobenzoate ligands, two pyridine N atoms and one water O atom, resulting in a slightly distorted squarepyramidal coordination geometry. Two carboxylate O and two pyridine N atoms determine the basal plane, and atom Cu 1 is displaced from this plane by 0.0964 (6) \AA, while the water O atom occupies the apical position. The bond lengths around the Cu atom are in reasonable agreement with the values found in other $\mathrm{Cu}^{\text {II }}$ complexes (Cambridge Structural Database, Version 5.27, November 2005; Allen, 2002).

As shown in Fig. 2, adjacent molecules of (I) are linked via water-mediated hydrogen-bonding interactions to generate a one-dimensional chain propagating along the a axis.

Experimental

A mixture of $\mathrm{Cu}(\mathrm{OH})_{2}(0.098 \mathrm{~g}, 1 \mathrm{mmol})$, 2-nitrobenzoic acid $(0.335 \mathrm{~g}, 2 \mathrm{mmol})$ and distilled water (16 ml) was stirred under

Figure 1
A view of (I), with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Figure 2
The one-dimensional chain structure of (I). H atoms bonded to C atoms have been omitted. Hydrogen bonds are depicted as dashed lines.
ambient conditions, and then pyridine ($0.16 \mathrm{~g}, 2 \mathrm{mmol}$) was added dropwise to the suspension. The mixture was sealed in a 25 ml Teflonlined stainless steel reactor, heated to 413 K for 60 h and then cooled to room temperature. Blue crystals of (I) were produced.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=571.98$
Triclinic, $P \overline{1}$
$a=7.4496$ (15) £
$b=10.872(2) \AA$
$c=15.594(3) \AA$
$\alpha=80.14$ (3) ${ }^{\circ}$
$\beta=81.45(3)^{\circ}$
$\gamma=87.03(3)^{\circ}$

Data collection

Rigaku R-AXIS RAPID

diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.694, T_{\text {max }}=0.827$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0503 P)^{2}\right. \\
& \quad+0.1673 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.57 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.55 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.097$
$S=1.06$
5580 reflections
351 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 5$	$1.9461(13)$	$\mathrm{Cu} 1-\mathrm{N} 4$	$2.0093(18)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9647(14)$	$\mathrm{Cu} 1-\mathrm{O} 1 W$	$2.3700(17)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$2.0028(17)$		
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 1$	$175.40(6)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 4$	$170.68(7)$
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{N} 3$	$90.39(7)$	$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 1 W$	$87.87(6)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$89.64(7)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1 W$	$96.72(7)$
$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{N} 4$	$89.75(7)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 1 W$	$93.70(7)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 4$	$89.47(7)$	$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{O} 1 W$	$95.62(7)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1W-H1WBㅇO2	$0.84(2)$	$1.85(2)$	$2.653(2)$	$159(3)$
O1 $^{\mathrm{H}} W-\mathrm{H} 1 W A \cdots \mathrm{O}^{\mathrm{i}}$	$0.82(2)$	$1.99(2)$	$2.776(2)$	$160(2)$

Symmetry code: (i) $x-1, y, z$.

H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. Water H atoms were located in a difference map and refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85(2) \AA$ and $\mathrm{H} \cdots \mathrm{H}=$ 1.30 (2) \AA, with displacement parameters set to $1.5 U_{\text {eq }}(O)$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Feng, S. \& Xu, R. (2001). Acc. Chem. Res. 34, 239-247.
Moulton, B. \& Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Wen, Y.-H., Cheng, J.-K., Feng, Y.-L., Zhang, J., Li, Z.-J. \& Yao, Y.-G. (2005). Inorg. Chim. Acta, 358, 3347-3354.
Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. \& Kim, J. (2003). Nature (London), 423, 705-714.

